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Introduction to practical SSH
and a few selected notes regarding computer security

Nuclear Engineering computing seminar
Ondřej Chvála <ochvala@utk.edu> 

Lecture overview
● Shared/public key cryptography
● Using SSH with keys
● Secure copy SCP
● SSH tips and tricks: per session config, 

remote execution, output redirection, 
tunneling, ssh filesystem, SOCKS proxy

September 20 2012
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The need for secure computing
● Internet was designed as plain-text based, since 1960s computers 

were slow, and the DARPANET lines were physically secured.

● Security of communication has to be added by the Netizen!

● Now computers are fast, and who knows who is listening. 

● Suggestion: encrypt everything, including hard drives: gadgets with 
personal information (i.e. SSN in tax returns) get stolen.

● This lecture focuses on secure shell, but public key cryptography 
applies in general: email reading, web browsing, data storage. 
Some examples on next slide.

● Telnet & FTP – clear text passwords, clear text sessions

● Avoid both. Ban them on your servers. 
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Practical suggestions
● Common Internet services such as HTTP (standard port 80, web 

browsing), POP3 & IMAP (ports 110 & 143, email reading), SMTP (25, 
email sending), NNTP (119, news reading), and many others send 
credentials (user names and passwords) in plain text! 

● Make sure you ALWAYS use secure alternatives: HTTPs, POP3s, IMAPs, 
SMTPs, NNTPs, etc. which run the original protocol over SSL/TLS: point 
to point secured transport layer. Generally they use different ports 
(443, 995, 993, 465, 563). See /etc/services file on a UNIX box (usha). 

● Note regarding Web: Even if passwords are sent encrypted over HTTP 
(banks, e-shops, and web2.0 such as Facebook) your session can be 
hijacked by anyone on local network or between you and the web 
server: password changed, money and identity stolen, etc.
Fortunately HTTPs is often enforced nowadays, but do not bet on it → 

● Install “HTTPs Everywhere” extension in your browser to be sure.

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.eff.org/https-everywhere
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Shared key cryptography
● Both sender and receiver share the same key. 

● The only encryption method publicly available until 1976.

● SKC a.k.a symmetric key cryptography.

● Block ciphers – blocks of data transformed by algorithm + key.

– Examples: EAS, DES, 3DES, RC5
● Stream ciphers – each character in the message is transformed 

using a pseudo-random cipher digit stream seeded by the key.

– Examples: RC4, cell phones use A5/1, A5/2, or A5/3

http://en.wikipedia.org/wiki/Cryptography#Symmetric-key_cryptography
http://en.wikipedia.org/wiki/Block_ciphers
http://en.wikipedia.org/wiki/Stream_ciphers
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Public key cryptography
● Based on trap-door mathematics a.k.a. one-way functions

● Described by Stanley Jevons (1835 – 1882) of Jevons paradox

● Example: factorization of very large numbers, RSA algorithm (1977)

● Take two large primes P, Q: P*Q => R is trivial, but R => P*Q is hard

● PKC a.k.a asymmetric key cryptography: public & private key pairs

● Public key encrypts data

● Private key decrypts data

http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/William_Stanley_Jevons
http://en.wikipedia.org/wiki/Jevons_paradox
http://en.wikipedia.org/wiki/RSA_(algorithm)


Septemer 20 2012 6

OpenPGP – RFC #4880
● PGP – Pretty Good Privacy, created by Phil Zimmerman in 1991

● Signing and encrypting with 2 key pairs: encrypt and verify sender

● Sender Alice 
● signs with her private key
● encrypts with Bob's 

public key

● Recipient Bob
● decrypts with his private 

key
● verifies sender using  

Alice's public key

Alice

Bob

http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://tools.ietf.org/html/rfc4880


Septemer 20 2012 7

SSH: Secure SHell
● Secure replacement for remote shells, with other benefits:

● compression, secure file copy, secure remote GUI, port forwarding.

● Server-client architecture: server/daemon on server, client connects.

● Server listens on TCP port 22 per standard, can be changed. 

● Authenticates the session by public key cryptography, generates 
random shared key for each session, uses the shared key to encrypt the 
session data (faster).

● 1995: SSH-v1 designed by Tatu Ylönen at Helsinki University in Finland

● This version is vulnerable, and should be disabled by default.

● 2006: SSH-v2 adopted by IETF as a new standard. 

● Most popular implementation is OpenSSH 
developed by the OpenBSD project.

http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/List_of_well-known_ports_(computing)
http://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
http://en.wikipedia.org/wiki/OpenSSH
http://www.openbsd.org/


Septemer 20 2012 8

Connecting to Usha, overview

● Use ssh client to connect to an ssh server, a daemon on remote box

● Linux/Mac: ssh command, Windows: PuTTY

● Generate public/private key pair on your local machine

● Linux/Mac: ssh-keygen command, Windows: PuTTYgen

● Copy the public key to the remote machine 

● Linux/Mac: scp command, Windows: WinSCP; Filezilla GUI for all OS

● Configure a shortcut on your local machine for NEcluster

● Linux/Mac: edit file ~/.ssh/config, Windows: save session in PuTTY

● Enable X11 forwarding, Windows: install X11 server
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Practical SSH on Linux/Mac
● Simplest connection: ssh <user>@<machine>

● Type password when prompted 

● Problem: one has to remember the password. 
Often either bad password (weak or shared with other accounts) or 
bad password management (written on a stick-it note).

For Usha
<machine> = 
usha.engr.utk.edu

● NOTE: man ssh for 
command-line options 
and other tricks
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Using keys
● Generate key: ssh-keygen

● Generates public & private key pair

NB: See man ssh-keygen for options such as key length, changing 
passphrase, validity intervals, change options related to the key, etc.

~/.ssh/id_rsa
Private key – keep 
on your computer!

~/.ssh/id_rsa.pub
Public key – copy over 
to the computer you 
want to connect to.

Add into ~/.ssh/authorized_keys on
the REMOTE machine (Usha)
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Copying files using scp
● To copy files: scp <local_file>    <user>@<machine>:<remote_path>

or scp <user>@<machine>:<remote_file>    <local_path>
NB: dot “.” means current directory
NB: man scp for options. Ex.:  -r copy dir., -p preserve attributes

● To copy the public key to usha using scp: 
o@tws ~ $ scp .ssh/id_rsa.pub ochvala@usha.engr.utk.edu:
id_rsa.pub                100%  387     0.4KB/s   00:00    
o@tws ~ $ 

● Connect to usha, create ~/.ssh/, add id_rsa.pub into file 
~/.ssh/authorized_keys

ochvala@usha:~$ mkdir .ssh
ochvala@usha:~$ chmod 700 .ssh
ochvala@usha:~$ cat id_rsa.pub >> .ssh/authorized_keys
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Using keys (2)
● NB: Easier way which works with OpenSSH: ssh-copy-id <user>@<box>

● After we added the keys, ssh <user>@<machine> works without 
password. Still needs to unlock the key by passphrase. 

(ssh-agent can help with that)

● Potential issues with manual copying: access rights: chmod 700 ~/.ssh 

● See: man chmod

ochvala@usha:~$ ls -la .ssh/
total 16
drwx------ 2 ochvala ochvala 4096 Sep  5 16:43 .
drwx------ 7 ochvala ochvala 4096 Sep  5 16:44 ..
-rw-r--r-- 1 ochvala ochvala  387 Sep  5 16:42 authorized_keys
-rw-r--r-- 1 ochvala ochvala  222 Sep  5 16:42 known_hosts

● File known_hosts contains public keys of machines you connected to.
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ssh-agent
● To keep ssh keys unlocked, i.e. avoid typing passphrases, use ssh-agent

● Most distributions start ssh-agent with X session (“GUI”), so you dont 
need to worry about that. Otherwise run: ssh-agent bash to open new 
shell with ssh-agent wrapped around it.

● To add keys: ssh-add <private key file>

● Options: -l lists keys in memory, -D deletes all identities; 

● man ssh-add
● Agent forwarding – chaining ssh authorization 

● Laptop (has my private key) → server1 → server2 → … → serverN 
works as long as each server has the relevant public key in 
~/.ssh/authorized_keys

● Magic: ssh daemons running on intermediate machines act as 
forwarding agents! 
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Lets make life easy: ~/.ssh/config
● Instead of typing the <user>@<machine> and command line options, 

place all into ~/.ssh/config and use a nickname. See: man ssh_config
Compression yes
ForwardX11 yes
ForwardAgent yes
ForwardX11Trusted yes

Host usha
        HostName usha.engr.utk.edu
        User ochvala
        IdentityFile ~/.ssh/id_rsa
Host cl
        HostName necluster.engr.utk.edu
        User ondrejch
        IdentityFile ~/.ssh/id_rsa.UTKNEcluster 

Default 
options for 
all sessions

Per-host 
configurations

● Instead ssh -XYC ochvala@usha.engr.utk.edu much simpler: ssh usha. 
Also scp <local_file> usha:<remote_path> etc.
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Remote execution & I/O redirection
● Run program on a remote machine: ssh usha <what_to_run>

● Example: ssh usha w

● Redirect output: ssh usha tar -tzf MyArchive.tgz > ListOfFiles.txt

● This will list remote archive content into local file.

● Redirect input: ssh usha tar -xz < LocalArchive.tgz

● Extracts LocalArchive.tgz on usha

● Pipes work in and out: cat myfile.txt | ssh usha lpr

● Will print myfile on usha
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Mounting remote filesystems via sshfs
● SSH-FS = ssh file system. User-space implementation of file system 

client over ssh. Works on any system you can ssh to.

● Typically sshfs has to be installed: sudo apt-get install sshfs

● Usha has it. See man sshfs for all options.

● Using: sshfs <user>@<host>:[remote_path]  <mount-directory>

o@usha:~$ mkdir ~/clusterhome
o@usha:~$ sshfs cl: clusterhome
o@usha:~$ df -h
Filesystem     Size  Used Avail Use% Mounted on
rootfs          38G  9.2G   27G  26% /
[..]
/dev/sdc2      107G  1.8G  100G   2% /home
cl:            3.6T  2.2T  1.3T  65% /home/o/clusterhome 

● Note: user has to be member of fuse group:
sudo usermod -a -G fuse <username>

https://en.wikipedia.org/wiki/SSHFS
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X11 forwarding
● If allowed, ssh will automatically create a fake X server, and send all 

X11 traffic via an encrypted tunnel.

ochvala@usha:~$ env | grep DISPLAY
DISPLAY=localhost:13.0
ochvala@usha:~$ gnomine &

● These calls will be captured by local X server: voilà, remotely run 
graphical programs.

● Linux, Mac, *BSD, … come with native 
Xservers. There are free Xservers for 
Windows, see previous seminar slides 
for details. 
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Local port forwarding
● Say there is an web server behind a firewall at UTK: intranet.utk.edu

● Create a tunnel via usha:

● ssh usha  -L 8888:intranet.utk.edu:80 

● Connect to intranet.utk.edu by browsing to http://localhost:8888

● Say you have to connect to unsecure service provider at UTK, such as 
IMAP (versus IMAPs). You can wrap the connection in an ssh tunnel:

● ssh usha  -L 8143:unsecure.utk.edu:143

● Point your mailer to localhost, port 8143

● In general: ssh <ssh-server> -L <local-port>:<target-box>:<target-port>

● Config file option: Host intranet
HostName usha.engr.utk.edu
LocalForward 8888 intranet.utk.edu:80 
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Remote port forwarding
● Inverse situation: how to make a local port available on remote box.

● Say a firewall blocks all incoming connections.

● Create a tunnel at usha, “home” is alias for home machine.

● ssh home  -R 8889:intranet.utk.edu:80 (executed at usha)

● This will connect to home machine creating an ssh tunnel, waiting 
for incoming requests to port 8889 to be re-routed though the 
tunnel to intranet.utk.edu:80

● Now you can connect to intranet.utk.edu from home by browsing to 
http://localhost:8889 (at home)

● Config file option (at usha):
Host remote-intranet
HostName home.dyndns.org
RemoteForward 8889 intranet.utk.edu:80 
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Dynamic port forwarding (SOCKS proxy)
● General version of local port forwarding, which maps all ports.

● Useful for connecting to Internet at untrusted network (hotel, mall, …)

● At local machine create dynamic port forward session:

● ssh usha -D 9999

● At local machine open Firefox, Menu/.../Connection settings
Manual Proxy Configuration, fill SOCKS fields
SOCKS Host: localhost
SOCKS Port: 9999

● Voilà, browsing via a secure channel (up to usha)!
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Notes on port forwarding

● Usha is used as an example of a machine running the ssh daemon, 
any other will do as well.

● Port numbers in examples are arbitrary, however:
● You would need to log in as root if you want services to listen on a 

port < 1024.
● Remember to open necessary ports on any firewall between your 

machine and usha.
● Unfortunately you can only forward services running on TCP, but 

there is a way to forward UDP through SSH using netcat.

● Make sure you are not breaking Acceptable Use Policy or other 
applicable cybersecurity rules. In particular national labs (ORNL) 
prohibit punching holes in firewalls, and you will get caught! 

http://netcat.sourceforge.net/
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Practical SSH on Windows
● Download ssh client for Windows named PuTTY: (Google PuTTY) 

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

● Put “usha.engr.utk.edu” into Host Name, enable X11 forwarding, save 
session

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
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Windows, Connecting to Usha (2)

● Click Connect, confirm ssh server key:
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Windows, Connecting to Usha (3)
● Type your username and password, and you are in:

● Change your password using passwd command!
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Copying files between Usha and Windows
● Use WinSCP http://winscp.net/eng/download.php

● Note:  Filezilla is another alternative, works also on Mac and Linux
http://filezilla-project.org/download.php

http://winscp.net/eng/download.php
http://filezilla-project.org/download.php
http://filezilla-project.org/download.php
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Generating ssh keys in Windows: PuTTYgen

● Windows see Configuring PuTTY to use Identities i.e. keys
http://www.mtu.net/~engstrom/ssh-agent.php#PuTTY

http://www.mtu.net/~engstrom/ssh-agent.php#PuTTY
http://www.mtu.net/~engstrom/ssh-agent.php#PuTTY
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X11 in Windows
● Linux and Mac come with X11 server implementation.

● There are several Xsevers for Windows. A nice freeware is Xming.

● First install the package Xming (by clicking on this link) and then install 
the package Xming-fonts. 

● When started, you should 
see an icon in the dock, 
click it to get info window.

http://www.straightrunning.com/XmingNotes/
http://sourceforge.net/project/downloading.php?group_id=156984&filename=Xming-6-9-0-31-setup.exe
http://sourceforge.net/project/downloading.php?group_id=156984&filename=Xming-fonts-7-5-0-47-setup.exe
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Navigating Linux environment
● List files in a directory: ls -lah

● Copy file: cp <from> <to>; move: mv <from> <to>

● Remove file: rm <file>; Remove directory: rmdir <file>

● Editors: vi, nano, emacs, geany, kate, ...

● Need help? Use man <command>, Google is your friend.

● See “resources” links at http://usha.engr.utk.edu/welcome.html and 
remember that Google is your good friend indeed! 

● Midnight Commander (command mc) is a useful tool to navigate 
around a Linux computer, similar to Norton/Far/Volkov Commanders.

● View/change directory, view/edit/copy/move files, ...

http://usha.engr.utk.edu/welcome.html
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More resources

● Practical Cryptography SSH: youtube talk
● An Illustrated Guide to SSH Agent Forwarding
● SSH with Keys HOWTO
● SSH Port Forwarding - UbuntuDoc
● Short series on ssh port forwarding
● SSH Dynamic Port Forwarding (SOCKS proxy)
● SSH one-liners from http://www.commandlinefu.com
● Windows: Configuring PuTTY to use Identities i.e. keys
● Windows: SSH Tunneling: Using Putty to Bypass Web Filters
● Windows: Another article about PuTTY tunneling, with useful links

https://www.youtube.com/watch?v=Bw4q1g1-4aY
http://www.unixwiz.net/techtips/ssh-agent-forwarding.html
http://sshkeychain.sourceforge.net/mirrors/SSH-with-Keys-HOWTO/SSH-with-Keys-HOWTO.html
https://help.ubuntu.com/community/SSH/OpenSSH/PortForwarding
http://blog.bstpierre.org/category/tools/ssh
https://www.linode.com/wiki/index.php/SSH_Dynamic_Port_Forwarding
http://www.commandlinefu.com/commands/matching/ssh/c3No/sort-by-votes
http://www.mtu.net/~engstrom/ssh-agent.php#PuTTY
http://www.techienoobie.com/2012/04/practical-ssh-tunneling-using-putty-to.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_8-3/ssh.html
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Summary
● Internet is fundamentally plain-text based, and you need to worry 

about security. Hardware gets stolen, passwords get sniffed, http 
connections hijacked → personal identities get stolen.

● Computers are fast, strong encryption is available. Therefore, encrypt 
everything: communication channels (https, imaps, smtps, etc.), 
storage media, backups, disk drives, USB keys, phone storage, …

● Set strong passwords, use keys for authentication, set convenient 
aliases for your connections in ~/.ssh/config

● SSH is much more than just secure shell:

● Remote execution, file transfer, X11 forwarding, mounting 
filesystems via ssh, local/remote port forwarding, SOCKS proxy, 
and more. Practice and investigate on your own.

● Make sure you follow applicable cybersecurity rules!
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