
Septemer 20 2012 1

Introduction to practical SSH
and a few selected notes regarding computer security

Nuclear Engineering computing seminar
Ondřej Chvála <ochvala@utk.edu>

Lecture overview
● Shared/public key cryptography
● Using SSH with keys
● Secure copy SCP
● SSH tips and tricks: per session config,

remote execution, output redirection,
tunneling, ssh filesystem, SOCKS proxy

September 20 2012

mailto:ochvala@utk.edu

Septemer 20 2012 2

The need for secure computing
● Internet was designed as plain-text based, since 1960s computers

were slow, and the DARPANET lines were physically secured.

● Security of communication has to be added by the Netizen!

● Now computers are fast, and who knows who is listening.

● Suggestion: encrypt everything, including hard drives: gadgets with
personal information (i.e. SSN in tax returns) get stolen.

● This lecture focuses on secure shell, but public key cryptography
applies in general: email reading, web browsing, data storage.
Some examples on next slide.

● Telnet & FTP – clear text passwords, clear text sessions

● Avoid both. Ban them on your servers.

Septemer 20 2012 3

Practical suggestions
● Common Internet services such as HTTP (standard port 80, web

browsing), POP3 & IMAP (ports 110 & 143, email reading), SMTP (25,
email sending), NNTP (119, news reading), and many others send
credentials (user names and passwords) in plain text!

● Make sure you ALWAYS use secure alternatives: HTTPs, POP3s, IMAPs,
SMTPs, NNTPs, etc. which run the original protocol over SSL/TLS: point
to point secured transport layer. Generally they use different ports
(443, 995, 993, 465, 563). See /etc/services file on a UNIX box (usha).

● Note regarding Web: Even if passwords are sent encrypted over HTTP
(banks, e-shops, and web2.0 such as Facebook) your session can be
hijacked by anyone on local network or between you and the web
server: password changed, money and identity stolen, etc.
Fortunately HTTPs is often enforced nowadays, but do not bet on it →

● Install “HTTPs Everywhere” extension in your browser to be sure.

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.eff.org/https-everywhere

Septemer 20 2012 4

Shared key cryptography
● Both sender and receiver share the same key.

● The only encryption method publicly available until 1976.

● SKC a.k.a symmetric key cryptography.

● Block ciphers – blocks of data transformed by algorithm + key.

– Examples: EAS, DES, 3DES, RC5
● Stream ciphers – each character in the message is transformed

using a pseudo-random cipher digit stream seeded by the key.

– Examples: RC4, cell phones use A5/1, A5/2, or A5/3

http://en.wikipedia.org/wiki/Cryptography#Symmetric-key_cryptography
http://en.wikipedia.org/wiki/Block_ciphers
http://en.wikipedia.org/wiki/Stream_ciphers

Septemer 20 2012 5

Public key cryptography
● Based on trap-door mathematics a.k.a. one-way functions

● Described by Stanley Jevons (1835 – 1882) of Jevons paradox

● Example: factorization of very large numbers, RSA algorithm (1977)

● Take two large primes P, Q: P*Q => R is trivial, but R => P*Q is hard

● PKC a.k.a asymmetric key cryptography: public & private key pairs

● Public key encrypts data

● Private key decrypts data

http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/William_Stanley_Jevons
http://en.wikipedia.org/wiki/Jevons_paradox
http://en.wikipedia.org/wiki/RSA_(algorithm)

Septemer 20 2012 6

OpenPGP – RFC #4880
● PGP – Pretty Good Privacy, created by Phil Zimmerman in 1991

● Signing and encrypting with 2 key pairs: encrypt and verify sender

● Sender Alice
● signs with her private key
● encrypts with Bob's

public key

● Recipient Bob
● decrypts with his private

key
● verifies sender using

Alice's public key

Alice

Bob

http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://tools.ietf.org/html/rfc4880

Septemer 20 2012 7

SSH: Secure SHell
● Secure replacement for remote shells, with other benefits:

● compression, secure file copy, secure remote GUI, port forwarding.

● Server-client architecture: server/daemon on server, client connects.

● Server listens on TCP port 22 per standard, can be changed.

● Authenticates the session by public key cryptography, generates
random shared key for each session, uses the shared key to encrypt the
session data (faster).

● 1995: SSH-v1 designed by Tatu Ylönen at Helsinki University in Finland

● This version is vulnerable, and should be disabled by default.

● 2006: SSH-v2 adopted by IETF as a new standard.

● Most popular implementation is OpenSSH
developed by the OpenBSD project.

http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/List_of_well-known_ports_(computing)
http://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
http://en.wikipedia.org/wiki/OpenSSH
http://www.openbsd.org/

Septemer 20 2012 8

Connecting to Usha, overview

● Use ssh client to connect to an ssh server, a daemon on remote box

● Linux/Mac: ssh command, Windows: PuTTY

● Generate public/private key pair on your local machine

● Linux/Mac: ssh-keygen command, Windows: PuTTYgen

● Copy the public key to the remote machine

● Linux/Mac: scp command, Windows: WinSCP; Filezilla GUI for all OS

● Configure a shortcut on your local machine for NEcluster

● Linux/Mac: edit file ~/.ssh/config, Windows: save session in PuTTY

● Enable X11 forwarding, Windows: install X11 server

Septemer 20 2012 9

Practical SSH on Linux/Mac
● Simplest connection: ssh <user>@<machine>

● Type password when prompted

● Problem: one has to remember the password.
Often either bad password (weak or shared with other accounts) or
bad password management (written on a stick-it note).

For Usha
<machine> =
usha.engr.utk.edu

● NOTE: man ssh for
command-line options
and other tricks

Septemer 20 2012 10

Using keys
● Generate key: ssh-keygen

● Generates public & private key pair

NB: See man ssh-keygen for options such as key length, changing
passphrase, validity intervals, change options related to the key, etc.

~/.ssh/id_rsa
Private key – keep
on your computer!

~/.ssh/id_rsa.pub
Public key – copy over
to the computer you
want to connect to.

Add into ~/.ssh/authorized_keys on
the REMOTE machine (Usha)

Septemer 20 2012 11

Copying files using scp
● To copy files: scp <local_file> <user>@<machine>:<remote_path>

or scp <user>@<machine>:<remote_file> <local_path>
NB: dot “.” means current directory
NB: man scp for options. Ex.: -r copy dir., -p preserve attributes

● To copy the public key to usha using scp:
o@tws ~ $ scp .ssh/id_rsa.pub ochvala@usha.engr.utk.edu:
id_rsa.pub 100% 387 0.4KB/s 00:00
o@tws ~ $

● Connect to usha, create ~/.ssh/, add id_rsa.pub into file
~/.ssh/authorized_keys

ochvala@usha:~$ mkdir .ssh
ochvala@usha:~$ chmod 700 .ssh
ochvala@usha:~$ cat id_rsa.pub >> .ssh/authorized_keys

Septemer 20 2012 12

Using keys (2)
● NB: Easier way which works with OpenSSH: ssh-copy-id <user>@<box>

● After we added the keys, ssh <user>@<machine> works without
password. Still needs to unlock the key by passphrase.

(ssh-agent can help with that)

● Potential issues with manual copying: access rights: chmod 700 ~/.ssh

● See: man chmod

ochvala@usha:~$ ls -la .ssh/
total 16
drwx------ 2 ochvala ochvala 4096 Sep 5 16:43 .
drwx------ 7 ochvala ochvala 4096 Sep 5 16:44 ..
-rw-r--r-- 1 ochvala ochvala 387 Sep 5 16:42 authorized_keys
-rw-r--r-- 1 ochvala ochvala 222 Sep 5 16:42 known_hosts

● File known_hosts contains public keys of machines you connected to.

Septemer 20 2012 13

ssh-agent
● To keep ssh keys unlocked, i.e. avoid typing passphrases, use ssh-agent

● Most distributions start ssh-agent with X session (“GUI”), so you dont
need to worry about that. Otherwise run: ssh-agent bash to open new
shell with ssh-agent wrapped around it.

● To add keys: ssh-add <private key file>

● Options: -l lists keys in memory, -D deletes all identities;

● man ssh-add
● Agent forwarding – chaining ssh authorization

● Laptop (has my private key) → server1 → server2 → … → serverN
works as long as each server has the relevant public key in
~/.ssh/authorized_keys

● Magic: ssh daemons running on intermediate machines act as
forwarding agents!

Septemer 20 2012 14

Lets make life easy: ~/.ssh/config
● Instead of typing the <user>@<machine> and command line options,

place all into ~/.ssh/config and use a nickname. See: man ssh_config
Compression yes
ForwardX11 yes
ForwardAgent yes
ForwardX11Trusted yes

Host usha
 HostName usha.engr.utk.edu
 User ochvala
 IdentityFile ~/.ssh/id_rsa
Host cl
 HostName necluster.engr.utk.edu
 User ondrejch
 IdentityFile ~/.ssh/id_rsa.UTKNEcluster

Default
options for
all sessions

Per-host
configurations

● Instead ssh -XYC ochvala@usha.engr.utk.edu much simpler: ssh usha.
Also scp <local_file> usha:<remote_path> etc.

Septemer 20 2012 15

Remote execution & I/O redirection
● Run program on a remote machine: ssh usha <what_to_run>

● Example: ssh usha w

● Redirect output: ssh usha tar -tzf MyArchive.tgz > ListOfFiles.txt

● This will list remote archive content into local file.

● Redirect input: ssh usha tar -xz < LocalArchive.tgz

● Extracts LocalArchive.tgz on usha

● Pipes work in and out: cat myfile.txt | ssh usha lpr

● Will print myfile on usha

Septemer 20 2012 16

Mounting remote filesystems via sshfs
● SSH-FS = ssh file system. User-space implementation of file system

client over ssh. Works on any system you can ssh to.

● Typically sshfs has to be installed: sudo apt-get install sshfs

● Usha has it. See man sshfs for all options.

● Using: sshfs <user>@<host>:[remote_path] <mount-directory>

o@usha:~$ mkdir ~/clusterhome
o@usha:~$ sshfs cl: clusterhome
o@usha:~$ df -h
Filesystem Size Used Avail Use% Mounted on
rootfs 38G 9.2G 27G 26% /
[..]
/dev/sdc2 107G 1.8G 100G 2% /home
cl: 3.6T 2.2T 1.3T 65% /home/o/clusterhome

● Note: user has to be member of fuse group:
sudo usermod -a -G fuse <username>

https://en.wikipedia.org/wiki/SSHFS

Septemer 20 2012 17

X11 forwarding
● If allowed, ssh will automatically create a fake X server, and send all

X11 traffic via an encrypted tunnel.

ochvala@usha:~$ env | grep DISPLAY
DISPLAY=localhost:13.0
ochvala@usha:~$ gnomine &

● These calls will be captured by local X server: voilà, remotely run
graphical programs.

● Linux, Mac, *BSD, … come with native
Xservers. There are free Xservers for
Windows, see previous seminar slides
for details.

Septemer 20 2012 18

Local port forwarding
● Say there is an web server behind a firewall at UTK: intranet.utk.edu

● Create a tunnel via usha:

● ssh usha -L 8888:intranet.utk.edu:80

● Connect to intranet.utk.edu by browsing to http://localhost:8888

● Say you have to connect to unsecure service provider at UTK, such as
IMAP (versus IMAPs). You can wrap the connection in an ssh tunnel:

● ssh usha -L 8143:unsecure.utk.edu:143

● Point your mailer to localhost, port 8143

● In general: ssh <ssh-server> -L <local-port>:<target-box>:<target-port>

● Config file option: Host intranet
HostName usha.engr.utk.edu
LocalForward 8888 intranet.utk.edu:80

Septemer 20 2012 19

Remote port forwarding
● Inverse situation: how to make a local port available on remote box.

● Say a firewall blocks all incoming connections.

● Create a tunnel at usha, “home” is alias for home machine.

● ssh home -R 8889:intranet.utk.edu:80 (executed at usha)

● This will connect to home machine creating an ssh tunnel, waiting
for incoming requests to port 8889 to be re-routed though the
tunnel to intranet.utk.edu:80

● Now you can connect to intranet.utk.edu from home by browsing to
http://localhost:8889 (at home)

● Config file option (at usha):
Host remote-intranet
HostName home.dyndns.org
RemoteForward 8889 intranet.utk.edu:80

Septemer 20 2012 20

Dynamic port forwarding (SOCKS proxy)
● General version of local port forwarding, which maps all ports.

● Useful for connecting to Internet at untrusted network (hotel, mall, …)

● At local machine create dynamic port forward session:

● ssh usha -D 9999

● At local machine open Firefox, Menu/.../Connection settings
Manual Proxy Configuration, fill SOCKS fields
SOCKS Host: localhost
SOCKS Port: 9999

● Voilà, browsing via a secure channel (up to usha)!

Septemer 20 2012 21

Notes on port forwarding

● Usha is used as an example of a machine running the ssh daemon,
any other will do as well.

● Port numbers in examples are arbitrary, however:
● You would need to log in as root if you want services to listen on a

port < 1024.
● Remember to open necessary ports on any firewall between your

machine and usha.
● Unfortunately you can only forward services running on TCP, but

there is a way to forward UDP through SSH using netcat.

● Make sure you are not breaking Acceptable Use Policy or other
applicable cybersecurity rules. In particular national labs (ORNL)
prohibit punching holes in firewalls, and you will get caught!

http://netcat.sourceforge.net/

Septemer 20 2012 22

Practical SSH on Windows
● Download ssh client for Windows named PuTTY: (Google PuTTY)

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

● Put “usha.engr.utk.edu” into Host Name, enable X11 forwarding, save
session

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Septemer 20 2012 23

Windows, Connecting to Usha (2)

● Click Connect, confirm ssh server key:

Septemer 20 2012 24

Windows, Connecting to Usha (3)
● Type your username and password, and you are in:

● Change your password using passwd command!

Septemer 20 2012 25

Copying files between Usha and Windows
● Use WinSCP http://winscp.net/eng/download.php

● Note: Filezilla is another alternative, works also on Mac and Linux
http://filezilla-project.org/download.php

http://winscp.net/eng/download.php
http://filezilla-project.org/download.php
http://filezilla-project.org/download.php

Septemer 20 2012 26

Generating ssh keys in Windows: PuTTYgen

● Windows see Configuring PuTTY to use Identities i.e. keys
http://www.mtu.net/~engstrom/ssh-agent.php#PuTTY

http://www.mtu.net/~engstrom/ssh-agent.php#PuTTY
http://www.mtu.net/~engstrom/ssh-agent.php#PuTTY

Septemer 20 2012 27

X11 in Windows
● Linux and Mac come with X11 server implementation.

● There are several Xsevers for Windows. A nice freeware is Xming.

● First install the package Xming (by clicking on this link) and then install
the package Xming-fonts.

● When started, you should
see an icon in the dock,
click it to get info window.

http://www.straightrunning.com/XmingNotes/
http://sourceforge.net/project/downloading.php?group_id=156984&filename=Xming-6-9-0-31-setup.exe
http://sourceforge.net/project/downloading.php?group_id=156984&filename=Xming-fonts-7-5-0-47-setup.exe

Septemer 20 2012 28

Navigating Linux environment
● List files in a directory: ls -lah

● Copy file: cp <from> <to>; move: mv <from> <to>

● Remove file: rm <file>; Remove directory: rmdir <file>

● Editors: vi, nano, emacs, geany, kate, ...

● Need help? Use man <command>, Google is your friend.

● See “resources” links at http://usha.engr.utk.edu/welcome.html and
remember that Google is your good friend indeed!

● Midnight Commander (command mc) is a useful tool to navigate
around a Linux computer, similar to Norton/Far/Volkov Commanders.

● View/change directory, view/edit/copy/move files, ...

http://usha.engr.utk.edu/welcome.html

Septemer 20 2012 29

More resources

● Practical Cryptography SSH: youtube talk
● An Illustrated Guide to SSH Agent Forwarding
● SSH with Keys HOWTO
● SSH Port Forwarding - UbuntuDoc
● Short series on ssh port forwarding
● SSH Dynamic Port Forwarding (SOCKS proxy)
● SSH one-liners from http://www.commandlinefu.com
● Windows: Configuring PuTTY to use Identities i.e. keys
● Windows: SSH Tunneling: Using Putty to Bypass Web Filters
● Windows: Another article about PuTTY tunneling, with useful links

https://www.youtube.com/watch?v=Bw4q1g1-4aY
http://www.unixwiz.net/techtips/ssh-agent-forwarding.html
http://sshkeychain.sourceforge.net/mirrors/SSH-with-Keys-HOWTO/SSH-with-Keys-HOWTO.html
https://help.ubuntu.com/community/SSH/OpenSSH/PortForwarding
http://blog.bstpierre.org/category/tools/ssh
https://www.linode.com/wiki/index.php/SSH_Dynamic_Port_Forwarding
http://www.commandlinefu.com/commands/matching/ssh/c3No/sort-by-votes
http://www.mtu.net/~engstrom/ssh-agent.php#PuTTY
http://www.techienoobie.com/2012/04/practical-ssh-tunneling-using-putty-to.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_8-3/ssh.html

Septemer 20 2012 30

Summary
● Internet is fundamentally plain-text based, and you need to worry

about security. Hardware gets stolen, passwords get sniffed, http
connections hijacked → personal identities get stolen.

● Computers are fast, strong encryption is available. Therefore, encrypt
everything: communication channels (https, imaps, smtps, etc.),
storage media, backups, disk drives, USB keys, phone storage, …

● Set strong passwords, use keys for authentication, set convenient
aliases for your connections in ~/.ssh/config

● SSH is much more than just secure shell:

● Remote execution, file transfer, X11 forwarding, mounting
filesystems via ssh, local/remote port forwarding, SOCKS proxy,
and more. Practice and investigate on your own.

● Make sure you follow applicable cybersecurity rules!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

